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ABSTRACT 

This thesis is concerned with the parallel approach to speeding up simulation, specifically the simulation of 

digital LSI MOS circuitry on the Intel iPSCL? hypercube. The simulation algorithm is based on RSIM, an event- 

driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. 

Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of 

the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A 

partitioning algorithm is also developed inorder to subdivide the circuit for parallel processing. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Due to the expense and complexity associated with fabricating a VLSI device, simulation is used 

extensively in the design of VLSI circuits. A device can be simulated after the designer has entered a 

complete description of the circuit into a computer. A circuit description consists of a set of 

components, such as transistors in the case of MOS devices, and a set of nodes with no restrictions on 

interconnections. The nodes are considered as both the terminals of the components and the wires which 

interconnect the components. Current is then assumed to flow from component to component through 

common nodes. 

Simulation is becoming more and more popular, and new applications for simulators are constantly 

being developed. However, the technology of semiconductor device fabrication has been improving such 

that it is now possible to fabricate MOS devices that contain more than l,OOO,OOO transistors. Chips of 

these sizes cannot be adequately tested with current simulator technology in a reasonable amount of 

time. Consequently, many new ideas are being implemented in the area of circuit simulation in hopes of 

meeting the increased simulation requirements imposed by the larger and more powerful VLSI circuits. 

Several approaches to speeding up circuit simulation have been developed to meet the challenge of 

simulating large VLSI circuits. The use of special purpose hardware built to run simulations, such as 

the Yorktown Simulation Engine, developed by IBM [l], and Abramovici's simulation pipeline [2], is one 

approach to this problem. However, these types of machines tend to be very expensive and limited to a 

narrow class of problems. Other approaches have led to the improvement of existing simulation algorithms 

or to the development of new ones that run on expensive supercomputers such as the Cray. A relatively 

recent approach, however, has been the usage of general purpose parallel computers to run existing 

simulation algorithms [3]. 
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12 Overview 

This thesis is concerned with the parallel approach to speeding up simulation, specifically the 

simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is 

based on RSIM, an event-driven switch-level simulator that incorporates a linear transistor model for 

simulating digital MOS circuits (41. Parallel processing techniques based on the concepts of Virtual 

Time and rollback [5] are utilized so that portions of the circuit may be simulated on separate 

processors, in parallel, for as large an increase in speed as possible. A partitioning algorithm is also 

developed in order to subdivide the circuit for parallel processing. 

The following chapter is a brief overview of simulation and the RSIM simulation algorithm. 

Chapter 3 discusses parallel strategies and the notions of Time Warp for the speedup of the simulation 

process. A circuit partitioning algorithm based upon the calculations that RSIM performs is developed in 

Chapter 4. Chapter 5 contains a description of the hypercube and of the parallel simulation that was 

developed for it. Results of the experiments performed on the parallel simulation are given along with 

concluding remarks in Chapter 6. 

I 
I 
I 
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CHAPTER 2 

SWITCH-LEVEL TIMING SIMULATION 

2.1 Simulation at Different Levels of Detail 

The two fundamental approaches to circuit simulation historically have been either analytical or 

The former involves detailed circuit analysis and is frequently referred to as SPICE-level functional. 

[6] simulation whereas the latter is known as logic-level simulation. 

The majority of SPICE-level simulators calculate transient circuit response by numerically 

integrating a complete set of simultaneous nonlinear differential equations. Using these types of 

circuit analyzers, in which circuit simulation is based on physical component models, the behavior of a 

circuit at sub-nanosecond detail can be readily observed. Information such as the internal currents 

flowing through discrete components and the amount of heat dissipated through discrete components can 

also be obtained. Most physical considerations are taken into account, allowing the designer a high 

level of confidence that his circuit will work once it is fabricated. 

Unfortunately, there is a high computational cost in providing this level of detail. SPICE-level 

simulation times are proportional to nm, where n is the number of nonlinear devices in the 

circuit, and m is between one and two [A. Newer simulators such as SPLICE [S] and RELAX [9] offer the 

same level of detail in less time by exploiting the unidirectional nature of MOS devices and the spacial 

sparsity and temporal sparsity of SPICE-level matrix calculations. Still, these types of simulators show 

only one to two orders of magnitude speedup over SPICE-level simulators and as such are only adequate 

for the simulation of a circuit with less than 10,OOO devices [lo]. 

Functional simulators use a less detailed approach primitive models such as NOT, AND, OR, NAND, 

and NOR gates are used rather than analog component models based on physical characteristics. Logic-level 

simulators generally calculate logic levels only, although timing parameters may be assigned to the logic 

models based on known circuit parasitics. A problem does arise, however, when attempting to 
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model the behavior of MOS circuitry; gate models do not contains the same bidirectional switching 

elements, which permit currents to flow through them in either direction, that characteriis MOS devices. 

This quality cannot be directly simulated using simple combinations of logic gates. Therefore, 

gate-level simulators are not sufficiently accurate in simulating the discrete features of MOS circuitry. 

Switch-level simulators such as LAMP [ll] and MOSSIM [12] combine very simple models of 

These transistors with efficient event based simulation algorithms to directly simulate MOS circuits. 

types of simulators are very fast because of the simplicity of the models used and are therefore 

excellent at simulating the switching bchavior of large MOS circuits. Unfortunately, also because of the 

simplicity of the models used, these methods are not well-suited for detailed circuit analysis as no 

timing or voltage level information is calculated. It shouid be noted that not all circuits can be 

simulated with this type of a simulator, e.g., the transmission gate XOR. Therefore, results from 

switch-level simulators should be used only for predicting the gross behavior of the device, and not 

whether the device will work properly once it is etched in silicon. 

RSIM [13], developed at MIT, provides a middle ground between SPICE-level simulators and 

switch-level simulators. RSIM offers comparative timing information at speeds much faster than circuit 

analyzers through a hybridization of switch-level simulation and circuit analysis. This allows RSIM to 

simulate significantly larger circuits at a level of detail sufficient to determine which sections 

require further and more detailed analysis. 

26 RSIM - A Logic-Level Timing Simulator 

RSIM is a logic-level simulator that uses a simple linear model: the result falls bctween 

switch-level and timing simulations. RSIM adopts a linear mode1 of the transistor in terms of an 

effective resistance, Rea, comprised of a variety of parameters, including the average channel 

resistance of the transistor over its range of operating terminal voltages and the context of the 

transistor’s use. The transistors are realized with a simple bidirectional linear model which may be 

viewed as a resistor and switch in series and can be described as 
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(switch closed) 

(switch open) 

'\ [ ~ e f p m l  (switch in unknown state) 

In RSIM, the problem of determining the value of a node is handled by first deriving the 

77ievenin equivalent circuit (see Figure 2.1) and and then determining the value of Vthev in 

relation to the quantum levels denoting 0, 1, and X. If this value differs from the node's previous 

value, a transition for the node's value to change is scheduled RdriveCload time steps in 

the future. This provides the designer with both a functional analysis of the circuit and some relative 

timing information. 

Figure 2.1. Thevenin Equivalent Circuit. 

2 3  The RSIM Simulation Algorithm 

The main simulation algorithm is event based. An event specifies (i) a node in the network, 

(ii) a new logic state, and (ii) a time at which the node's value is to be changed to the  new logic 

state. The evenrlist is a time-sorted list of events. Processing an event entails 

(a) 

(b) 

(c) calculating any consequences, i.e., new events resulting from the node's 

new value. First, all nodes that could be affected by the change are found 

and marked - this requires a tree-walk of the network starting at the source and 

drain nodes of transistors for which the changing node is the gate. The 

removing the event from the eventlist 

changing the node's state to reflect its new value 
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tree-walk follows sources/drain connections, stopping at input nodes or 

non-conducting transistors. For each marked node two calculations are made: (1) 

a charge-sharing calculation that models changes of state due to charging/ 

discharging of node capacitance and (2) a final-value calculation that determines 

the node’s ultimate state. 

As seen in step (c) the network is naturally partitioned into stages, each stage consisting of 

nodes shorted together by source-drain connections. This allows RSIM to provide a good base for the 

exploitation of parallelism in digital MOS circuit analysis. 
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PARALLEL SIMULATION 

7 

3.1 Overview 

Several issues are germane to the study of parallel or distributed algorithms. The first issue is 

task allocation, that is, the breakdown of the total workload into smaller tasks assigned to 

different processors. Another 

issue is the cortiniunication of the interim computational results between processors. Coverage of this 

topic is deferred until the hypercube is introduced. A third issue is the synclironization of the 

computations of different processors. Certain methods require processors to wait at predetermined 

points, or pliares, for the completion of computations or for the arrival of data. Methods such as 

these are often classified as synchronous. Other methods, namely asyndironozis, have no waiting 

period; therefore, the validity of the results from these methods must be assessed. 

This topic will be covered in Chapter 4 on partitioning of circuits. 

A synchronous algorithm is mathematically equivalent to an algorithm governed by a global clock, 

i.e., an algorithm for which the start of each phase is simultaneous for all processors, and the end 

of the message reception is simultaneous for all messages. In attempting to implement a synchronous 

algorithm in an asynchronous distributed system, a syrtcliroriization mechanism or a synclironizer is 

required. Global s?,izcliroriization, 

as previously described, is used in synchronous algorithms, or lock-step simulations. Local 

synchronization is used in the Chandy-Misra method [14] and many other distributed simulation 

algorithms [15j [16]. The third approach, rollback, has been popularized for its use in the Time 

Warp mechanism [ 11.  

There are three fundamental approaches to resolving this problem. 

3 2  Lock-step Simulation 

The lock-step approach is usually implemented using a global counter that is initially set to the 

number of processors running the simulation at time step i and decremented each time a processor 
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completes time step i. When the counter reaches zero, all processors then communicate shared data 

among themselves, essentially resynchronizing themselves with one another. All processors then proceed en 

masse to simulate the next time step, i + I. 

Several problems exist with this method. Most importantly, the simulation will proceed only at 

the rate governed by the slowest processor for each time step. Equivalently, all but one processor will 

be idle at some point during the simulation time step. Therefore, the work among the processors must be 

load balanced, or divided as evenly as possible. It will be shown in the next chapter that this 

problem cannot be easily solved; therefore, methods that rely heavily on load balancing may deviate 

considerably from their ideal behavior. 

An interesting effect of improper load balancing for this method is that the addition of an extra 

processor to the simulation does not necessarily increase the performance of the simulation. If the 

additional processor is not assigned a portion of workload that is creating the bottleneck, the processor 

will eventually join the pool of idle processors waiting for the bottleneck to resolve. In this case, 

which may occur quite often, no additional increase in parallelism will occur for the simulation, and 

therefore, the system is no longer scalable. 

3 3  Chandy-Misra Method 

Chandy and Misra’s approach to distributed simulation is to allow phases of a problem to be 

executed in parallel, i.e., a sequence of parallel computations, and then to require sychronization 

at phase interfaces. Since there is no centralized process that oversees the network, the termination of 

a phase, namely deadlock, is detected in a distributed manner. The network proceeds until 

deadlock occurs, then detects deadlock, and finally will recover from deadlock and resume 

computations. 

Physical processes (PPs) that interact with one another are modeled as logical processes (LPs) 

that communicate with one another via messages. A message tn from PP, to PP. at time 

1 is simulated by LP, sending LP. a tuple: (t, m) .  The effect of encoding time in 

J 

J 
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the message results in synchronization without a global clock. This method also requires that a message 

sent by LP, at time t is a function of its initial state, t, and the messages it has 

received up to and including 1. This is referred to as the realizability condrion. 

The Chandy-Misra method can be viewed as a network consisting of logical processes with directed 

channels or (ycs connecting pairs of processes. Interactions between LPs in the network consist of 

time stamped messages moving along the network's arcs. Each LP executes sequential code and two special 

commands, receive and send, until deadlock occurs. Deadlock occurs either when any LP, is waiting 

to receive a message from some LP, and there is no message in transit from LP. to LP, 

or when every LP in the network is terminated. Chandy and Misra postulate a null message: (t, 

null) sent by LPj to LP, to announce the absence of messages. LP, is then defined to 

be resumable if the set of lines it waits for at this point is different from the set of lines it was 

waiting for at the point of deadlock. 

J 

Several problems may exist with this model. Because blocking of LPs occurs while sending or 

receiving messages, LPs contained within an undirected cycle in the network may be innundated with null 

messages. In addition, deadlock around a cycle can rapidly became global. Seethalakshmi [18] has shown 

that the Chandy-Misra method and other similar distributed algorithms will approach ideal performance 

when there are no multiple loops in the network. This is not the case, however, in VLSI circuit design. 

Therefore, this method is considered too conservative to extract concurrency for the simulation of -1 

circuits. 

3.4 Time Warp Model 

The Time Warp mechanism is an optimistic, loosely-coupled, distributed, discrete-event 

synchronization algorithm. Time Warp allows processes to execute independently according to local 

virtual clocks without requiring each process to wait on the local virtual clock of other processes 

that communicate with it. Conflicts in time which result from allowing local virtual clocks of each 

process to become unsynchronized are resolved by the use of the rollback mechanism. Each processor will 
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continue computing at its own pace under the assumption that no message is received. In such cases of 

conflict, the rollback mechanism allows the processor to invalidate its computation by restoring an old 

checkpoint, and restart itself, taking the received message properly into account. Messages that 

cause conflicts are called strasglers, and messages sent by the processor during erroneous 

computation are cancelled by attimessages. 

The Time Warp mechanism is characterized in [19] by Berry as follows: 

3.4.1 Dah  structure of a time warp object 

A Time Warp object is represented as five main data structures: 

1. a state 

2. an input message queue 

3. an output message queue 

4. a past state queue 

5. a local virtual time clock 

The input message queue contains all of the messages that have been received by the object since thc last 

g u d q e  collection, including messages that have already been processed. The reason for keeping the 

processed message is that when a rollback occurs, the messages must be reprocessed. 

The output message queue of an object contains all of the messages the object has sent since the 

last garbage collection. If the object rolls back its computation, all the messages it sent to other 

objects from the simulation time to which it rolls back until the present can be found in the output 

queue so that proper antimessages can be generated. 

The past state queue is an ordered list of checkpoint states. When a straggler arrives, the most 

recent past state which is earlier than the straggler’s timestamp is the state to which the object is 

rolled back. 

The local virtual time is the object’s local simulation clock. During the execution of an event, 

it represents the simulation time at which the event occurs. Otherwise, it contains the lowest timestamp 
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of all the unprocessed messages. If there is no unprocessed message in the input queue, the local 

virtual time is set to infinity. When a message is inserted into the object’s input queue, its timestamp 

is compared with the local virtual time. If the former is less or equal, a rollback is initiated. The 

simulation is terminated when all the local virtual times are infinity. 

3.42 Antimessages 

A negative copy of every message sent by an object is kept in the object’s output queue. A Time 

Warp message has a field that denotes whether it is a positive, regular message or a negative, 

antimessage. 

The sending of an antimessage can be regarded as releasing the antimessage from the output queue 

and transmitting it to the destination of the original message. When the antimessage is received it 

annihilates with the original message. In addition, if the antimessage is timestamped earlier than the 

receiving object’s local virtual time, then a rollback is initiated. 

3.43 Rollback 

A rollback is an action taken in response to the arrival of a straggler at an object. The object 

retrieves the most recent state with a local virtual time lower than the straggler’s timestamp. The 

local virtual time of the object is set equal to the local virtual time of the retrieved state. The 

restored local virtual time determines which of the messages in the input queue must be reprocessed and 

which of the antimessages in the output queue must be released. There are two ways of releasing 

antimessages, either by aggressive cancellation or by lazy cancellation. 

3.4.4 Cancellation methods 

Aggressive cancellation means that the antimessages for all messages sent during a rolled-back 

simulation time period are released as soon as the object is rolled back. The advantage of this method 

is that when messages are wrong the object reports them wrong as soon as it can, thereby canceling their 
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effects as soon as possible. Rapid cancellation can prevent cascading of antimessages and, hence, 

rollbacks, because incorrect messages are prevented from creating other incorrect messages. The 

disadvantage of agressive cancellation is that the object may retransmit the same messages that it 

canceled. In this case other objects may be rolled back twice, unnecessarily. 

In lazy cancellation, the object waits until the send time of the output message has been reached 

again after rollback before deciding whether to cancel it. At that time, the antimessage is released 

only if the message that was sent before does not match the newly created message. 

Jefferson [20] and Gafni [21] have shown that lazy cancellation has a number of advantages over 

aggressive cancellation. The authors suggest that for most applications, lazy cancellation will produce 

fewer antimessages and secondary rollbacks than aggressive cancellation. For these cases, lazy 

cancellation will offer substantially better performance. Also in certain situations, aggressive 

cancellation can lead to infinite rollback and the mechanism will subsequently deadlock. 

3.45 Global virtual time 

The global virtual time is the minimum of the local virtual times of all objects and of the 

timestamps of all messages in transit. In order to obtain an accurate global virtual time, it would be 

necessary to stop the computation until all local virtual times and relevant timestamps are collected. 

However, stopping the computation would defeat the purpose of Time Warp. Therefore, a pessimistic 

estimate obtainable without halting the computation is used as the global virtual time estimate that is 

distributed to each object. 

The importance of the global virtual time is that no rollback can occur for a simulation time 

earlier than the global virtual time, since no message can be stamped with simulation time lower than its 

sender’s local virtual time. Therefore, output produced before the global virtual time can be committed, 

and messages and states with stamps earlier than the global virtual time can be garbage-collected. In 

addition, when the global virtual time is equivalent to the termination time of the simulation, the 

simulation is compIeted. 
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3.4.6 Performance 

Jefferson has performed a Pool Balls benchmark test using the Caltech/JPL Mark 111 Hypercube 

running under the Time Warp mechanism [22]. Results from the simulation indicate a speedup of 7 using 8 

processors and 12 using 16 processors relative to the performance of the simulation using one processor. 

These results are quite encouraging and an attempt will be made to achieve similar performance for the 

parallel simulation of VLSI circuits using the concepts of Time Warp. 
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CHAPIER 4 

CIRCUIT PARTITIONING 

4.1 Overview 

The need to partition MOS circuits for parallel simulation is relatively new; however, people have 

long been interested in the problem of partitioning networks or graphs. The ideas developed from 

partitioning of graphs can readily be applied to partitioning of circuits. 

A graph, denoted G = {N,E}, consists of a finite set of nodes (or vertices) and a set of pairs of 

vertices, E, called edges. Nodes in an electrical circuit may be modeled as vertices in a graph and 

transistors as edges between the source and drain nodes. S is a stage or charge-coupled 

partition of N if and only if 

(1) 

(2) Si n Sj =d,foreachiandj .  

N = S ,  u S ,  u S ,  u * 

and is formed using the algorithm of Figure 4.1. 

Calculate- stages { 
For each unprocessed node n in the circuit { 

Assign n to a new group 
For each transistor attached ton by its source or drain { 

transistor, respectively, to group 
Add unprocessed node, m, that is attached to drain or source of 

Recursively trace through sources and drains attached to r n  

Figure 4.1. Algorithm to Compute Stages. 

Figure 4.2 shows an example of the graph representation for an MOS circuit and the division of 

stages for the circuit. Since the calculations RSIM performs to compute a node's value always involve 

knowing the values of the other nodes in its stage, a stage is never broken apart and is the smallest 

piece of a circuit in which we have interest. 

I' 
I 



1 T 

(a) Example Circuit 
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STAGE 1: STAGE 3: 

STAGE 2 

T 
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(b) Graph Representation of Circuit 

ATAGE 1 z STAGE3 __z STAGE4 4 

e STAGE2 --t 

1 

(c) Block Diagram of Stages 

Figure 42.  Example Circuit Divided into Stages 
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A group, denoted P, is a collectively and mutually exclusive collection of stages. The problem, 

borrowed from graph theory, is to construct groups such that there is minimal interconnections between 

the groups and such that the stages are evenly distributed over the groups. These two requirements 

correspond to limiting interprocessor communication and balancing the load on the processors [23]. 

4.2 Different Approaches 

Since the solution of this problem is known to be NP-complete, most approaches involve heuristics 

designed to come close to optimality, though not guaranteed to produce the optimal solution [24]. These 

heuristics tend to be very complex, and computation intensive. The painvise optimization procedure by 

Kernighan and Lin [Z] runs in O(n210g n) time. 

On the other computational extreme, random partitioning will run in O(n log n) time. However, 

this method results in enormous interprocessor communication. Partitioning by fanin and fanout cones, 

methods commonly used in partitioning of VLSI circuits for parallel simulation, requires circuit leveling 

and loop detection and removal [XI. This constraint is not acceptable when attempting to simulate the 

two-phase clocking of MOS circuitry. 

4 3  Modified Element Strings Approach 

The element strings approach [27l consists of (1) dividing the circuit into a set of connected 

stages with at most one fanin and one fanout included and (2) balancing the loads across all of the 

partitions. The purpose of dividing the circuit up in this manner is to maximize the likelihood of 

concurrent simulation activity resulting from a signal change on the driving output. Although this 

scheme provides high concurrency levels, large amounts of interprocessor communication also occur. 

A simple modification to the above algorithm maintains the goal of statically load balancing the 

partitions while limiting interprocessor communication. Grouping stages with the largest fanin and 

fanout with one another will substantially reduce the interprocessor communication. Externally generated 

events from a stage will have the highest probability of affecting stages that are contained within the 
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same group, as stages with the greatest dependencies on one another will in all likelihood be merged 

together. The algorithm for creating groups is given below in Figure 4.3. Figure 4.4 shows an example 

of groups constructed from stages. 

Merge-stages { 
Calculate-stages 
Fori  = 1 to number of processors { 

While (size of group i e average transistor count) 
{ 

I 
Add stage with largest fanin and fanout connection to group i 

1 
1 

Figure 43. Creation of Groups from Stages. 

As the dynamic behavior of a circuit cannot be predicted without statistical observation of the 

behavior of a circuit, a simple approach to static load balancing was used. A stage cannot be added to a 

group if the average transistor count (total number of transistors in the circuit + number of 

processors) has been exceeded. Although the algorithm will allow groups of size 2 * (average 

transistor count - I ) ,  it is expected that most sizes of stages will be in the vicinity of 3 to 10 

transistors; hence, the load for a given group should not fluctuate from the average transistor count by 

more than this amount. 

-1 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Z I  

GROUP3: I 

I I 
I I 

Figure 4.4. Example of Groups Constructed from Stages. 
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CHAPTER 5 

HYPERCUBE IMPLEMENTATION 

5.1 Overview of Hypercube System Architecture 

The hypercube is an example of a distributed-memory, message-passing multiprocessor in which the 

processors have only private local memory and their activities are coordinated by sending messages among 

themselves through an N-cube interconnection topology. In an N-dimensional hypercube (also called the 

binary N-cube, cosmic cube, etc.), 2 processors are consecutively numbered by binary integers from 

0 through 2N-1. Each processor is connected to all of the other processors whose binary tags 

differ from its own by exactly one bit. Topologically, this places each processor at the vertices of an 

N-dimensional cube (see Figure 5.1). An N-dimensional hypercube can be constructed recursively by taking 

two (N-1)-dimension hypercubes and connecting each node in one to the corresponding node in the other 

with a bidirectional link (see Figure 5.2). Each node has exactly N adjacent neighbors in this 

topology. The average distance between nodes is N/2 and the maximum distance is N. 

N 

An attractive feature of the hypercube is its homogeneity; the entire system looks topologically 

identical from the point of view of every node. In addition, the hardware complexity of the hypercube 

architecture grows Nlog(N) since there are only Nlog(N) links connecting the processors. This is in 

contrast to N2 complexity for fully-connected architectures. 

Although the hypercube is an MIMD (multiple instruction, multiple data) machine, one of the most 

popular programming styles for it has been characterized as single program, nrirltiple data. In these 

applications, all of the processors run the same program, but they do not execute instructions in the 

lock-step manner of an SIMD (single instruction, multiple data) machine [B]. 

5.2 Hypercube Software Environment 

The typical hypercube software application has a program that runs on the host and a program that 

The part of the application that is the host program executes as one or more runs on the nodes. 
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Figure 5.1. View of a 3-Dimensional and 4-Dimensional Cube with Vertices Numbered. 

F i  52.View of a 3-Dimensional and 4-Dimensional Cube Constructed from Lower-Dimension Cubes. 
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processes, typically providing the initialization for the application and the loading of the nodes with 

their individual programs. The host also communicates with the nodes via messages. The part of the 

application that is the node program executes in each node’s operating system environment and runs 

concurrently. Typically these programs do calculations and exchange data via messages with other node 

processes and host processes (291. 

52.1 The Host Program 

The host program attends to the administrative functions of the simulation. These tasks include: 

At appointed times, the host program will poll each node for its local virtual time and the number 

of checkpoints it has taken. If the host determines that the simulation has proceeded beyond a certain 

global virtual time (see Section 3.4.5)’ it will issue a garbage-collection request to the nodes. 

loading the node processors with the node program 

coordinating the garbage collection of checkpoints 

determining the completion of the simulation 

The majority of the host’s processing time is spent in idle, waiting for end of simulation 

notifications from the nodes. When this condition occurs and no rollback notifications are in transit, 

the host requests all nodes to write their data to an output file. 

52.2 The Node Program 

The algorithm for the node program is shown in Figure 5.3. Messages sent and received by the node 

are asynchronous, and are read at the beginning of each simulated time step. Processing of messages from 

nodes follows the rules governing the Time Warp mechanism, outlined in Chapter 3. Messages sent by the 

host are either queries for the local clock time or a request for the garbage-collection of old 

checkpoints. 

Checkpointing of the node’s state is done between the processing of internally generated events 

This and the additional requirement of checkpointing immediately and externally generated events. 
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Node- program { 
Read circuit description from input file 
Calculate portion of circuit to simulate (see section 5.3) 
Do until simulation ends { 

Check message queue and process message (see section 3.4) 
Process all events on eventlist at current time that were generated by internal 

Send output changes and queue any internally generated events 
Checkpoint system according to scheduling discipline 
Process all events on eventlist at current time that were generated by external 

Send output changes and queue any internally generated events 
Increment time 

nodes 

nodes 

1 
Notify host of completion 

1 

Figure 53. Algorithm for Node Program. 

following a rollback will ensure that the system does not deadlock. It is expected that the likelihood 

of a rollback is greatest immediately following the occurrence of an externally generated event and will 

decrease as the time since the occurrence increases. Checkpoints are taken 2” time steps after the 

(N-1) checkpoint following a rollback. This strategy proceeds until a maximum of 100 steps is reached 

between successive checkpoints; subsequently, checkpoints are then taken every 100 time steps. It should 

be noted, however, that the assumption of rollbacks exhibiting temporal and spatial localities has not 

yet been established theoretically or experimentally. 

53 Assignment of Groups 

The problem of finding an optimal solution for the assignment of groups for processing by nodes on 

the hypercube is an NP-complete problem. As a result, a much simpler and more scalable solution to the 

problem was implemented. Nodes are assigned groups in order of their node number, with node 0 initially 

assigned the group with the largest total fanin and fanout connections. An unassigned group is assigned 

for processing by node N if, among the remaining unassigned groups, it has the largest total number of 

fanin and fanout connections to aIl of N s  adjacent neighbors that have already been assigned groups. 

The algorithm for assignment of groups to processors is given in Figure 5.4. Figure 5.5 shows the 

effects of the Placement_o[groups algorithm on a network of groups. 
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Placement-otgroups { 
Assign group with largest total fanin and fanout connection to processor 0 
For i = 1 to processor number { 

Group that is assigned to processor i: An unassigned group with the largest 
total fanin and fanout connections to all adjacent processors that have a 
processor number less than i 

1 
1 

Figure 5.4. Assignment of Groups to Processors. 

7 6 2 

Figure 5.5. 

5 

Example of the Assignment of Groups to Processors for a Sample Network. 
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CHAPTER 6 

RESULTS AND CONCLUSIONS 

6.1 Experimental Circuit 

A set of experiments was designed to test the performance of the parallel simulation on the Intel 

iPSC/2 hypercube. An 8-bit ripple carry adder was chosen as the test circuit. The delay time for 

the propagation of value of the initial carry to the last stage in the adder circuit is proportional to 

the size of the adder; therefore, the ripple carry adder is an excellent choice as a test circuit to 

perform worst-case analysis of the parallel simulation. The general block diagram of an n-bit adder is 

shown in Figure 6.1 and the MOS transistor realization of an arbitrary full adder in the circuit is shown 

in Figure 6.2. 

Identical simulations were run with a varying number of processors to detect the speedup of 

the simulation. Speedup is defined to be 

s, = t N /  t l  

where tN is the time taken to run the simulation on N processors. 

6 2  Results 

The performance of the test circuit is given below in Table 6.1. 

Table 6.1. Performance of Test Circuit with Timing Wheel Size = 256. 

N tN( P s) Speedup 

1 3923 1.00 
2 9717 0.40 
4 10985 0.36 
8 6818 0.58 

16 6083 0.64 

The results are not encouraging. One possible explanation is that checkpointing of the system and 

reclaiming of the checkpoint data upon resynchronization are absorbing a large percentage of the 
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Figure 6.1. General Block Diagram of an N-bit Adder. 

Figure 6.2. MOS Transistor Realization of a Full Adder. 
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simulation time. A solution to this problem would be to decrease the riming wheel size, that is, the 

number of time steps in the future that events can be stored on the eventlist without having to appear on 

the overflow list. By empirically varying the eventlist size, a value of 8 produced faster simulation 

times, listed in Table 6.2. 

Table 6.2. Performance of Test Circuit with Timing Wheel Size = 8. 

N tN(P 4 Speedup 

1 2087 1.00 
2 3463 0.60 
4 2008 1.03 
8 1148 1.82 

16 1020 2.05 

These results are considerably better; however, no speedup is achieved over one proccssor until 

the simulation is run on 8 or 16 processors. Clearly, additional side effects of the checkpointing 

mechanism have reduced the effects of pardelizing the sequential simulation. 

A closer examination reveals that the frequency of checkpoints during a simulation vector can vary 

greatly based upon the number of rollbacks that occur. A typical situation occurs upon processing of a 

new vector: a rollback will occur based upon an incorrect assumption of the value of the carry bit. As 

the simulation proceeds, a minimum of 8 checkpoints will occur based on the checkpointing strategy of 

Section 5.2.2. However, since a one-processor configuration of the simulation will begin to checkpoint 

at a frequency of 2x until a maximum of 100 time steps, an average of only 1.5 checkpoints will 

occur for each test vector beyond the first. 

To test this theory, the history mechanism was changed to checkpoint after every time step, 

ensuring an equal number of checkpoints for each simulation. The results are presented in Table 6.3. 

Table 63. Performance of Test Circuit with Checkpoint After Each Time Step. 

1 63948 1.00 
2 52097 1.22 
4 35949 1.78 
8 21406 2.99 

16 11895 5.38 
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The speedup results listed in Table 6.3 are significantly better; however, it should be noted that 

the simulation took 10 times longer for 16 processors with this method than it did with the history 

mechanism checkpointing on an exponential basis. 

63 Conclusions 

Several types of overhead exist in the Time Warp mechanism that indicate it might be prohibitive 

to use for parallel circuit simulation. From the results of the simulation experiments in Section 6.2, 

it is obvious that the checkpointing mechanism has very large space and time requirements. When the 

number of checkpoints is not equal among the simulations run on varying processors, it will be this 

factor that dominates in determining whether it is possible to achieve a speedup. Jefferson, in fact, 

has used the strategy of checkpointing at every time step for his benchmark tests. For circuit 

simulation, however, this method of checkpointing is not plausible for achieving quicker results as the 

actual run time of the simulation increases muitifold. 

Communication overhead exists when rollback occurs and triggers further rollbacks. Even when 

communication resources are plentiful, excessive computation can drain the computational resources of the 

processors, as every message requires some minimal amount of processing. It is imperative then that the 

partitioning of the test circuit will minimize the conditions that prompt rollback to occur. Arnold [30] 

requires that circuits are hand partitioned and in addition, has used carry lookahead logic in his test 

circuit to minimize the rollback phenomenon. His parallel simulator, PRSIM, has met with some success 

for this method, achieving a speedup of approximately 4 on 6 processors. However, the method of hand 

partitioning of circuits is not acceptable for large VLSI circuits, and furthermore, it is not clear how 

well PRSIM performs in worst-case scenarios. 

Finally, there may also be a computational overhead due to invalid computations. If a processor 

receives an invalidation message but cannot interrupt the computations it is performing, then this 

overhead must also be taken into account. It is hoped, however, that the time lost for the completion of 

computations at a given time step does not outweigh the effects of the rollback mechanism. 



27 

6.4 Areas for Further Research 

Solutions for these problems entail further research in the areas of checkpointing and 

partitioning of circuits. A possible solution for rapidly checkpointing a system may require the 

addition of dedicated hardware to create and restore checkpoints to the system. Dynamic partitioning or 

statistical-based partitioning of a circuit may help alleviate the problems of cascading rollbacks. Both 

of these issues must be addressed in the rollback mechanism in order for it to be useful for parallel 

circuit simulation. 

In addition, other methods for parallel simulation should be explored. It may be that the method 

In this case, methods such as the one of using rollback for parallel sirnulation is not effective. 

proposed by Chandy and Misra should be explored. 
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